70% OFF

Spectral Theory: Basic Concepts and Applications by David Borthwick, ISBN-13: 978-3030380014

Original price was: $50.00.Current price is: $14.99.

Description

Spectral Theory: Basic Concepts and Applications by David Borthwick, ISBN-13: 978-3030380014

[PDF eBook eTextbook]

  • Publisher: ‎ Springer; 1st ed. 2020 edition (March 13, 2020)
  • Language: ‎ English
  • 348 pages
  • ISBN-10: ‎ 3030380017
  • ISBN-13: ‎ 978-3030380014

This textbook offers a concise introduction to spectral theory, designed for newcomers to functional analysis. Curating the content carefully, the author builds to a proof of the spectral theorem in the early part of the book. Subsequent chapters illustrate a variety of application areas, exploring key examples in detail. Readers looking to delve further into specialized topics will find ample references to classic and recent literature.

Beginning with a brief introduction to functional analysis, the text focuses on unbounded operators and separable Hilbert spaces as the essential tools needed for the subsequent theory. A thorough discussion of the concepts of spectrum and resolvent follows, leading to a complete proof of the spectral theorem for unbounded self-adjoint operators. Applications of spectral theory to differential operators comprise the remaining four chapters. These chapters introduce the Dirichlet Laplacian operator, Schrödinger operators, operators on graphs, and the spectral theory of Riemannian manifolds.

Spectral Theory offers a uniquely accessible introduction to ideas that invite further study in any number of different directions. A background in real and complex analysis is assumed; the author presents the requisite tools from functional analysis within the text. This introductory treatment would suit a functional analysis course intended as a pathway to linear PDE theory. Independent later chapters allow for flexibility in selecting applications to suit specific interests within a one-semester course.

Table of Contents:

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Hilbert Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Normed Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Lp Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Bounded Linear Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Hilbert Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 Sobolev Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.6 Orthogonality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.7 Orthonormal Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3 Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.1 Unbounded Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Adjoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3 Closed Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4 Symmetry and Self-adjointness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.5 Compact Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4 Spectrum and Resolvent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.1 Definitions and Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2 Resolvent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.3 Spectrum of Self-adjoint Operators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.4 Spectral Theory of Compact Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5 The Spectral Theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.1 Unitary Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.2 The Main Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.3 Functional Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.4 Spectral Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6 The Laplacian with Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.1 Self-adjoint Extensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.2 Discreteness of Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
6.3 Regularity of Eigenfunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
6.4 Eigenvalue Computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
6.5 Asymptotics of Dirichlet Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
6.6 Nodal Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
6.7 Isoperimetric Inequalities and Minimal Eigenvalues . . . . . . . . . . . . . . . . . 174
6.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
7 Schrödinger Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
7.1 Positive Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
7.2 Relatively Bounded Perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
7.3 Relatively Compact Perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
7.4 Hydrogen Atom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
7.5 Semiclassical Asymptotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
7.6 Periodic Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
7.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
8 Operators on Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
8.1 Combinatorial Laplacians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
8.2 Quantum Graphs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
8.3 Spectral Properties of Compact Quantum Graphs . . . . . . . . . . . . . . . . . . . . 232
8.4 Eigenvalue Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
8.5 Eigenvalue Asymptotics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
8.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
9 Spectral Theory on Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
9.1 Smooth Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
9.2 Riemannian Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
9.3 The Laplacian. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
9.4 Spectrum of a Compact Manifold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
9.5 Heat Equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
9.6 Wave Propagation on Compact Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
9.7 Complete Manifolds and Essential Self-adjointness . . . . . . . . . . . . . . . . . . 287
9.8 Essential Spectrum of Complete Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
9.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
A Background Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
A.1 Measure and Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
A.2 Lp Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
A.3 Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
A.4 Elliptic Regularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

David Borthwick is Professor and Director of Graduate Studies in the Department of Mathematics at Emory University, Georgia, USA. His research interests are in spectral theory, global and geometric analysis, and mathematical physics. His monograph  Spectral Theory of Infinite-Area Hyperbolic Surfaces appears in Birkhäuser’s Progress in Mathematics, and his Introduction to Partial Differential Equations is published in Universitext.

What makes us different?

• Instant Download

• Always Competitive Pricing

• 100% Privacy

• FREE Sample Available

• 24-7 LIVE Customer Support

Reviews

There are no reviews yet.

Be the first to review “Spectral Theory: Basic Concepts and Applications by David Borthwick, ISBN-13: 978-3030380014”
Cart
Physics Laboratory Experiments 8th Edition, ISBN-13: 978-1285738567Physics Laboratory Experiments 8th Edition, ISBN-13: 978-1285738567
$41.64
×
Hormones, Brain and Behavior (3rd Edition) – eBookHormones, Brain and Behavior (3rd Edition) – eBook
$22.00
×
Pharmacotherapeutics for Advanced Practice Nurse Prescribers (4th Edition)Pharmacotherapeutics for Advanced Practice Nurse Prescribers (4th Edition)
$35.96
×
Modern Physics with Modern Computational Methods: for Scientists and Engineers 3rd Edition, ISBN-13: 978-0128177907Modern Physics with Modern Computational Methods: for Scientists and Engineers 3rd Edition, ISBN-13: 978-0128177907
$42.99
×
The Complexity of Boolean Functions by Ingo Wegener, ISBN-13: 978-0471915553The Complexity of Boolean Functions by Ingo Wegener, ISBN-13: 978-0471915553
$14.45
×
Theory of Games and Economic Behavior 60th Anniversary Commemorative Edition, ISBN-13: 978-0691130613Theory of Games and Economic Behavior 60th Anniversary Commemorative Edition, ISBN-13: 978-0691130613
$19.99
×
Physics for Scientists and Engineers 6th Edition Volume 1 by Paul A. Tipler, ISBN-13: 978-0716789642Physics for Scientists and Engineers 6th Edition Volume 1 by Paul A. Tipler, ISBN-13: 978-0716789642
$29.44
×
Statistics for Engineers and Scientists 5th Edition by William Navidi, ISBN-13: 978-1259717604Statistics for Engineers and Scientists 5th Edition by William Navidi, ISBN-13: 978-1259717604
$20.99
×
Modern Physics 3rd Edition by Kenneth S. Krane, ISBN-13: 978-1118061145Modern Physics 3rd Edition by Kenneth S. Krane, ISBN-13: 978-1118061145
$19.64
×
The Black Swan: The Impact of the Highly Improbable, ISBN-13: 978-1400063512The Black Swan: The Impact of the Highly Improbable, ISBN-13: 978-1400063512
$9.99
×
The Mathematical Theory of Communication by Claude E Shannon, ISBN-13: 978-1843761846The Mathematical Theory of Communication by Claude E Shannon, ISBN-13: 978-1843761846
$29.98
×
The New Regulatory Framework for Consumer Dispute Resolution, ISBN-13: 978-0198766353The New Regulatory Framework for Consumer Dispute Resolution, ISBN-13: 978-0198766353
$14.49
×
Abnormal Psychology: Perspectives 6th Edition David Dozois, ISBN-13: 978-0134428871Abnormal Psychology: Perspectives 6th Edition David Dozois, ISBN-13: 978-0134428871
$14.07
×
Physics: Principles with Applications 7th GLOBAL Edition, ISBN-13: 978-1292057125Physics: Principles with Applications 7th GLOBAL Edition, ISBN-13: 978-1292057125
$9.99
×
The Handbook of the Criminology of Terrorism, ISBN-13: 978-1118923955The Handbook of the Criminology of Terrorism, ISBN-13: 978-1118923955
$22.58
×
Single Variable Calculus: A First Step 1st Edition, ISBN-13: 978-3110524628Single Variable Calculus: A First Step 1st Edition, ISBN-13: 978-3110524628
$14.99
×